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Abstract
We classify all solutions of the restricted Toda chain from the ansatz that all
moments are expressed in terms of polynomials of some variable. We show that
each such solution corresponds to the Sheffer class orthogonal polynomials.
It is shown that corresponding Hankel determinants are related to some well-
known combinatorial numbers.
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1. Introduction

The Toda chain equations [24]

u̇n = un(bn − bn−1) ḃn = un+1 − un (1.1)

with the additional condition

u0 = 0 (1.2)

have the well-known relation with the theory of orthogonal polynomials, where the dot
indicates the differentiation with respect to t. In what follows we will call equations (1.1) with
restriction (1.2) the restricted Toda chain (TC) equations.

Let Pn(x; t) be orthogonal polynomials satisfying the three-term recurrence relation

Pn+1(x) + bnPn(x) + unPn−1(x) = xPn(x) (1.3)

with initial conditions

P0 = 1 P1(x) = x − b0. (1.4)

We will assume that un �= 0, n = 1, 2, . . . . Then, by the Favard theorem [4], there exists
a nondegenerate linear functional σ such that the polynomials Pn(x) are orthogonal with
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respect to it:

σ(Pn(x)Pm(x)) = hnδnm (1.5)

where hn are normalization constants. The linear functional σ can be defined through its
moments

cn = σ(xn) n = 0, 1, . . . . (1.6)

It is usually assumed that c0 = 1 (standard normalization condition), but we will not assume
this condition in the following. So we will assume that c0 is an arbitrary nonzero parameter.

Introduce the Hankel determinants

Dn = det(ci+j )|i,j=0,...,n−1 D0 = 1 D1 = c0. (1.7)

Then the polynomials Pn(x) can be uniquely represented as [4]

Pn(x) = 1

Dn

∣∣∣∣∣∣∣∣∣∣

c0 c1 · · · cn

c1 c2 · · · cn+1

· · · · · · · · · · · ·
cn−1 cn · · · c2n−1

1 x · · · xn

∣∣∣∣∣∣∣∣∣∣
. (1.8)

The normalization constants are expressed as

hn = Dn+1

Dn

h0 = D1 = c0. (1.9)

While the recurrence coefficients un satisfy the relation

un = hn

hn−1
= Dn−1Dn+1

D2
n

. (1.10)

Thus we have

hn = c0u1u2 · · · un. (1.11)

Assume now that the polynomials Pn(x; t) depend on a real parameter t through their
recurrence coefficients un(t), bn(t), i.e. we will assume that

Pn+1(x; t) + bn(t)Pn(x; t) + un(t)Pn−1(x; t) = xPn(x; t)

P0 = 1 P1(x; t) = x − b0(t).
(1.12)

Then we have

Theorem 1. The following statements are equivalent.

(i) The recurrence coefficients un, bn satisfy the TC equations (1.1) with the restriction u0 = 0
(i.e. ḃ0 = u1).

(ii) The corresponding orthogonal polynomials Pn(x; t) satisfy the relation

Ṗ n(x; t) = −unPn−1(x; t). (1.13)

(iii) The moments cn satisfy the relation

ċn = cn+1 +
ċ0 − c1

c0
cn (1.14)

where c0(t) is an arbitrary differentiable function of t.

See [1, 17, 18] for the proof of this theorem.
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We note only that it is commonly assumed that c0(t) ≡ 1, but in what follows we will
choose another normalization condition

ċ0 = c1. (1.15)

Then the condition (1.14) becomes very simple

ċn = cn+1 (1.16)

or, equivalently

cn(t) = dnc0(t)

dtn
. (1.17)

Hence, for the Toda chain case, the Hankel determinants Dn = Dn(t) have the form

Dn = det
(
c
(i+k)
0 (t)

)∣∣
i,k=0,...,n−1 D0 = 1 D1 = c0 (1.18)

where c
(j)

0 means the j th derivative of c0(t) with respect to t.
Now we have

Proposition 1. The restricted TC equations are equivalent also to the equations

d2 log Dn

dt2
= Dn−1Dn+1

D2
n

n = 1, 2, . . . . (1.19)

Proof of this proposition is almost obvious. Equations (1.19) are equivalent to the Hirota
bilinear form [8] for the restricted TC equations which was analysed by many authors (see,
e.g., [2, 15]). The parametric determinants such as Dn(t) have played a very fundamental role
in the Hirota–Sato theory of integrable dynamical systems as tau-functions. As was noticed
in [21, 27] relation (1.19) for the Hankel determinants of type (1.18) with (1.16) was firstly
obtained by Sylvester and is known today as the Sylvester theorem [11].

Note also that for the Hankel determinants of the form (1.18) we have two useful relations

bn = Ḋn+1

Dn+1
− Ḋn

Dn

(1.20)

and

ḣn = hnbn. (1.21)

In particular, for n = 0 we have from (1.21)

b0 = ċ0

c0
. (1.22)

Relation (1.22) allows us to restore c0(t) if the recurrence coefficient b0 = b0(t) is known
explicitly from Toda chain solutions (1.1).

In this paper we consider a class of explicit solutions of the restricted TC equations through
some simple polynomial ansatz for the moments cn(t). We then show that such solutions
correspond to the Sheffer class orthogonal polynomials such as the Meixner, Pollaczek,
Laguerre, Charlier and Hermite polynomials. As a by-product, we obtain known expressions
for the Hankel determinants of some combinatorial numbers, such as the Euler, the binomial
coefficients and Bell numbers.



5852 Y Nakamura and A Zhedanov

2. Generating functions of the moments

In the theory of orthogonal polynomials the Stieltjes function F(z) is defined as a generating
function of the moments [4]

F(z) = c0

z
+

c1

z2
+ · · · +

cn

zn+1
+ · · · . (2.1)

If moments cn depend on t according to the Toda ansatz (1.16), we then have

Ḟ (z; t) = c1

z
+

c2

z2
+ · · · +

cn

zn
+ · · · = zF (z) − c0. (2.2)

In fact, relation (2.2) is equivalent to restricted TC equations (1.16).
We also consider a generating function of another type:

�(p) =
∞∑

k=0

ck

pk

k!
. (2.3)

Note that in number theory for a given sequence of numbers cn the generating function of type
(2.1) is called a G-function, and the generating function of type (2.3) is called an E-function
[5]. The relationship between functions F(z) and �(p) is known and is given by the (formal)
Laplace transform

F(z) =
∞∑

k=0

ckz
−k−1 =

∞∑
k=0

ck

∫ ∞

0

pk e−pz

k!
dp =

∫ ∞

0
e−pz�(p) dp. (2.4)

The Stieltjes function F(z) is convenient in many questions connected with the measure for
orthogonal polynomials, because in many cases the measure on the real axis can be restored by
means of the inverted Stieltjes transform [4]. On the other hand, even for classical polynomials
the Stieltjes function F(z) cannot be expressed in terms of elementary functions. Moreover,
the convergence domain for the function �(p) is in general larger than that for F(z). So
in many questions it is reasonable to deal with the generating function of E-type instead of
G-type.

For the case of the restricted TC equations with condition (1.16) we see that the generating
function �(p) is given automatically by the formal Taylor expansion

�(p; t) =
∞∑

k=0

ck(t)
pk

k!
=

∞∑
k=0

c
(k)
0 (t)

pk

k!
= c0(t + p) (2.5)

of c0(t +p). Thus the E-generating function is given just by the shifted c0(t +p) zero-moment
function. The Stieltjes function is given then as the Laplace transform

F(z; t) =
∫ ∞

0
e−pzc0(t + p) dp. (2.6)

It is known [14] that a formal continued fraction expansion of the Laplace transform in terms
of a solution of the restricted TC equations is given through the Stieltjes function F(z; 0),∫ ∞

0
e−pzc0(p) dp = c0(0)

z + b0(0)
− u1(0)

z + b1(0)
− u2(0)

z + b2(0)
− · · · . (2.7)

Note that if a solution un(t), bn(t) of the restricted TC equations is given, then it is possible
to add an arbitrary constant to bn(t) which leads again to a solution of the same Toda chain:

b̃n(t) = bn(t) + β ũn(t) = un(t) (2.8)
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where the constant β does not depend on t. Corresponding orthogonal polynomials P̃n(x; t)

differ from Pn(x; t) only by shift of the argument:

P̃n(x) = Pn(x − β). (2.9)

The function c0(t) (as follows from (1.22)) changes to

c̃0(t) = c0(t) exp(βt). (2.10)

Thus the E-generating function for moments of the shifted polynomials Pn(x −β) differs only
by an exponential multiplier.

Another trivial transformation is the scaling of recurrence coefficients. We have

Proposition 2. Let un(t), bn(t) be a solution of the restricted TC equations (1.1) and γ �= 0 is
an arbitrary constant (not depending on t). Then γ 2un(γ t), γ bn(γ t) will also be the solution
of the restricted TC equations. The corresponding zeroth moment will be c0(γ t).

3. Spectral transformations of orthogonal polynomials

Recall that by Christoffel transform [23] we mean new orthogonal polynomials P̃n(x) which
are obtained from Pn(x) by the formula

P̃n(x) = Pn+1(x) − AnPn(x)

x − λ
(3.1)

where λ is an arbitrary parameter such that Pn(λ) �= 0, n = 1, 2, . . . , and

An = Pn+1(λ)

Pn(λ)
. (3.2)

The new moments c̃n corresponding to orthogonal plynomials P̃n(x) are expressed through
initial moments by [4, 23]

c̃n = µ(cn+1 − λcn) n = 0, 1, . . . (3.3)

where µ is an arbitrary parameter. It can be easily shown that the Christoffel transformation
(3.1) is equivalent to the transformation of the moments (3.3) [4].

Now we consider conditions under which transformation (3.3) is compatible with the
restricted TC ansatz (1.16). In general, parameters λ,µ may depend on t. So, we have

˙̃cn = µ̇(cn+1 − λcn) + µ(ċn+1 − λċn − λ̇cn) = µ̇(cn+1 − λcn) + µ(cn+2 − λcn+1) − µλ̇cn.

But we should have ˙̃cn = c̃n+1. The moments cn are linear independent (because otherwise
Dn = 0). So we have

λ̇ = 0 µ̇ = 0. (3.4)

Thus the Christoffel transform is compatible with the restricted TC equations if and only if
the parameters λ,µ do not depend on t.

It is sufficient to put µ = 1 because c̃0 is determined up to the constant. We thus have

c̃n = cn+1 − λcn n = 0, 1, . . . . (3.5)

For the Hankel determinants D̃n constructed from the moments c̃n it is not difficult to get

D̃n = (−1)nDnPn(λ). (3.6)
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4. Special polynomial ansatz and separated variables

In this section we describe concrete examples of the E-generating functions c0(t) (2.5) which
stem from special ansatz for the functional structure of the moments cn(t). Namely, we assume
a separation of variables as follows,

cn(t) = Tn(y(t))c0(t) n = 0, 1, . . . (4.1)

where Tn(y(t)) is a polynomial of exactly degree n of some (unknown) variable y(t). Note
that in [9, 10] some systems of orthogonal polynomials were considered having moments as
orthogonal polynomials from some variable. In our approach we do not require that Tn(y) be
orthogonal polynomials.

The main result is

Theorem 2. Ansatz (4.1) is compatible with the restricted TC equations if and only if the
function y(t) is a solution of the equation

ẏ(t) = σ(y) (4.2)

where σ(y) is a (nonzero) polynomial in y with degree less than or equal to 2

σ(y) = ξy2 + ηy + ζ (4.3)

and the function φ(y) = c0(t (y)) be a solution of the equation

φ′(y) = τ(y)

σ (y)
φ(y) (4.4)

where τ(y) is a polynomial of exactly first degree,

τ(y) = αy + β (4.5)

with α �= 0 and β arbitrary parameters, and t (y) is the inverse function with respect to y(t).
The restriction between α and ξ

ξ �= −α

n
n = 1, 2, . . . (4.6)

is assumed. The prime in (4.4) indicates the differentiation with respect to y.

Proof. The restricted TC equations are equivalent to the relations ċn = cn+1. For n = 0 we
have

ċ0 = T1(y(t))c0 (4.7)

where T1(y) = αy + β and α �= 0 by condition that T1(y) is a polynomial of exactly first
degree.

For n = 1 we have

ċ1 = αẏc0 + T1(y)ċ0 = (
αẏ + T 2

1 (y)
)
c0 = T2(y)c0 (4.8)

whence we derive equation for y

ẏ = 1

α

(
T2(y) − T 2

1 (y)
) = σ(y) (4.9)

and we get equation (4.2). By restriction (4.6) we see that T2(y) is indeed a polynomial of
degree exactly 2. Introduce now function φ(y) = c0(t (y)). This can be done because the
inverse function t (y) exists due to condition ẏ �= 0. We have from (4.7)

ċ0 = φ′(y)ẏ = c0T1(y).

Using (4.9) we arrive at the condition (4.4). Now we have that both c1(t) and c2(t) satisfy
ansatz (4.1).
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Assume, by induction, that cn(t) = Tn(y)c0 already satisfies this ansatz. For cn+1(t) we
have

cn+1(t) = ċn(t) = ẏT ′
n(y)c0 + Tn(y)ċ0 = (σ (y)T ′

n(y) + Tn(y)τ (y))c0(t)

where we used (4.2) and (4.4). Hence

cn+1(t) = Tn+1(y)c0(t)

where

Tn+1(y) = σ(y)T ′
n(y) + Tn(y)τ (y).

It is easily verified that by restriction (4.6) Tn+1(y) is indeed a polynomial of degree exactly
n + 1. This proves the theorem. �

Now we try to recover the functional structure of the recurrence coefficients un, bn of
(1.3). We have

u1 = ḃ0 = dc1/c0

dt
= dT1(y(t))

dt
= ασ(y). (4.10)

Then we can find b1 from

b1 = u̇1

u1
+ b0 = τ(y) + σ ′(y). (4.11)

Repeating this process we can find step by step all further coefficients b2, u2, b3, u3, . . . .

We have

Proposition 3. If moments cn(t) satisfy the polynomial ansatz (4.1) then the recurrence
coefficients un(t), bn(t) have the explicit expressions

bn(t (y)) = τ(y) + nσ ′(y)

un(t (y)) = nσ(y)
(
τ ′(y) + 1

2 (n − 1)σ ′′(y)
) = nσ(y)(α + (n − 1)ξ).

(4.12)

Proof of this proposition is an elementary application of induction.
We see that the recurrence coefficient un(t) has expression with separated variables:

un(t) = q(t)κn n = 0, 1, . . . (4.13)

where q(t) = σ(y(t)) depends only on t and κn = n(α + (n − 1)ξ) depends only on n.
It is possible to prove an inverse theorem

Theorem 3. Two ansatzs (4.1) and (4.13) (with the restriction κ0 = 0) for solutions of the
restricted TC equations are equivalent.

Such solutions were constructed in [16, 28]. They were also rediscovered in [3]. In [28]
and [3] it was established that corresponding polynomials belong to the Sheffer class, namely,
Meixner, Pollaczek, Laguerre, Krawtchouk, Charlier and Hermite polynomials. Moreover, it
appears that time dynamics for these polynomials is described by Lie group SU(1, 1), SU(2)

or Heisenberg–Weyl. It is easily established in (4.12) that the compatibility of the ansatz
(4.13) with the restricted TC equations [24] leads to the conclusion that κn is a polynomial of
n of degree 2 or 1 and moreover κ0 = 0 and bn(t) is a linear function of n. Note that α �= 0. If
deg(κn) = 2, we deal with the case of SU(1, 1) algebra (infinite chain) or SU(2) algebra (finite
chain). Corresponding polynomials are Meixner, Pollaczek, Laguerre (SU(1, 1) case) and
Krawtchouk (SU(2) case). If deg(κn) = 1, namely, ξ = 0, we deal with the Heisenberg–Weyl
algebra. Corresponding polynomials are Charlier and Hermite.

In what follows we describe all these cases separately. We will add arbitrary parameter
β to recurrence coefficient bn(t) to describe as general E-generating functions as possible in
accordance with (2.10).
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5. Hankel determinants of some combinatorial numbers

We first rewrite the Sylvester relation (1.19), or the bilinear form for the restricted TC equations,
as

Dn+1Dn−1 = Dn

d2Dn

dx2
−

(
dDn

dx

)2

n = 1, 2, . . . . (5.1)

This implies that the Hankel determinant Dn+1 of degree n + 1 is derived from Dn−1,Dn and
its derivative. Each Dn is uniquely determined from a given differentiable function c0(t) via
the deformation equations of moments (1.16). We consider a separation of variables (4.1)
which can be classified according to a choice of the function σ(y) = ξy2 + ηy + ζ .

Case 1. σ(y) = 1 − y2. In this case σ(y) has two distinct real roots. By solving (4.4) we
derive

φ(y) = λ1(1 − y)µ1(1 + y)µ2 (5.2)

where µ1 + µ2 = −α,µ1 − µ2 = −β and λ1 is an arbitrary nonzero constant. By solving
(4.2) we have y(t) = tanh(t − t0). Therefore we obtain the moment

c0(t) = φ(y(t)) = λ1 sech−α(t − t0) eβ(t−t0). (5.3)

The parameter β in the exponential multiplier is a trivial factor of orthogonal polynomials (see
(2.10)). The resulting solution of the restricted TC equations is

bn(t) = (α − 2n) tanh(t − t0) + β un(t) = −n(n − α − 1) sech2(t − t0). (5.4)

As was discussed in [3] this solution is related to the Meixner orthogonal polynomials. It also
emerges in [13] as a seed solution for constructing a hypergeometric function solution.

Let us choose the parameters in τ(y) = αy + β as α = −1, β = 0 and set λ1 = 1 and
t0 = 0. Then

c0(t) = 2et

e2t + 1
. (5.5)

It is to be noted that the moment c0(t) has an intimate relationship with the Euler numbers
Ek, k = 0, 1, 2, . . . , which are the combinatorial numbers defined by

Ek = ik
k∑

m=0

2mam

(
k

m

)
2

et + 1
=

∞∑
k=0

am

tm

m!
i = √−1. (5.6)

Here am are rational numbers and
(

k

m

)
are binomial coefficients. The first several Euler numbers

are E0 = E2 = 1, E4 = 5, E6 = 61, E8 = 1385, E10 = 50 521 and E2k−1 = 0. The Euler
polynomials Ek(x) of degree k are defined by the following E-generating function:

�(p; x) = 2exp

ep + 1
=

∞∑
k=0

Ek(x)
pk

k!
Ek(x) =

k∑
m=0

am

(
k

m

)
xk−m. (5.7)

Thus c0(t) = �(2t; 1/2) and the coefficients Ek(1/2) of expansion

c0(t) =
∞∑

k=0

Ek(1/2)
2ktk

k!
(5.8)

give the Euler numbers Ek through the relation (2i)kEk(1/2) = Ek .
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Next we introduce the Hankel determinants Dn(t) = det
(
c
(i+j)

0 (t)
)∣∣

i,j=0,...,n−1, c
(0)
0 (t) =

c0(t), n = 1, 2, . . . , defined by the moment (5.5). Let us assume

Dn(t) = (−1)[n/2]2n

(
n−1∏
k=0

k!

)2
en(n−1)t+nt

(e2t + 1)n
2 . (5.9)

Inserting

Dn

d2Dn

dt2
−

(
dDn

dt

)2

= −n2 e2t

(e2t + 1)2
Dn

2 (5.10)

into the Sylvester relation (5.1) we have

Dn+1

Dn

= −n2 e2t

(e2t + 1)2

Dn

Dn−1

= −n2 e2t

(e2t + 1)2

−(n − 1)2 e2t

(e2t + 1)2

Dn−1

Dn−2

= (−1)n(n!)2 e2nt

(e2t + 1)2n

D1

D0

= (−1)n(n!)22e2nt+t

(e2t + 1)2n+1
.

Therefore,

Dn+1(t) = (−1)[(n+1)/2]2n+1

(
n∏

k=0

k!

)2
en(n+1)t+(n+1)t

(e2t + 1)(n+1)2 .

Then (5.9) is proved by induction. It follows from the definition that each Dn(0) gives the
Hankel determinant of the Euler polynomials, i.e.

Dn(0) = det(Ei+j (x))|i,j=0,...,n−1 = (−1)[n/2]2n(1−n)

(
n−1∏
k=0

k!

)2

. (5.11)

Let us remark that Dn(0) does not depend on x. Using (2i)kEk(1/2) = Ek we have

Proposition 4. The Hankel determinant of the Euler numbers is given by

det(Ei+j )|i,j=0,...,n−1 =
(

n−1∏
k=0

k!

)2

. (5.12)

It is shown here that the Hankel determinant det(Ei+j )|i,j=0,...,n−1 of the Euler numbers is
derived through a separation of variables of case 1. Radoux [21] presented the Hankel
determinant det(E2i+2j )|i,j=0,...,n−1 = ( ∏n−1

k=0(2k)!
)2

of nonzero Euler numbers E2i+2j .

Case 2. σ(y) = −(y − 1)2. In this case σ(y) has a real root of multiplicity 2. A solution of
(4.4) is

φ(y) = λ2(y − 1)−α exp

(
−α + β

y − 1

)
(5.13)

where λ2 is an arbitrary nonzero constant. By solving (4.2) we have y(t) = 1/(t − t0) + 1.
Therefore we obtain the moment

c0(t) = φ(y(t)) = λ2(t − t0)
α e(α+β)(t−t0). (5.14)
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The corresponding solution of the restricted TC equations is then

bn(t) = α − 2n

t − t0
+ α + β un(t) = n(n − α − 1)

(t − t0)2
. (5.15)

Let us set t0 = −1, α + β = −x and λ2 = 1. Then we obtain

c0(t) = (t + 1)α e−xt+x (5.16)

where (t + 1)α e−xt is a generating function of the Laguerre polynomials Lk
α−k(x),

(t + 1)α e−xt = ∑∞
k=0 Lk

α−k(x)tk . The condition (4.6) says that α �= n, n = 1, 2, . . . .

Let us consider the Hankel determinant of the generating function of the generalized
binomial coefficients Lk

α−k(0),

Dn(t) = det(di+j (t))|i,j=0,...,n−1 D0(t) = 1 D1(t) = d0

d0(t) = (t + 1)α dn(t) = dn d0(t)

dtn
.

(5.17)

Let us assume

Dn(t) = (−1)[n/2]
n−1∏
k=1

k!(α − k + 1)n−k(t + 1)nα−n(n−1). (5.18)

Inserting

Dn

d2Dn

dt2
−

(
dDn

dt

)2

= −n(α − n + 1)

(t + 1)2
Dn

2 (5.19)

into the Sylvester relation (5.1) we have

Dn+1

Dn

= −n(α − n + 1)

(t + 1)2

Dn

Dn−1

= −n(α − n + 1)

(t + 1)2

−(n − 1)(α − n + 2)

(t + 1)2

Dn−1

Dn−2

= (−1)nn!
∏n

k=1(α − n + k)

(t + 1)2n

D1

D0

= (−1)nn!
n∏

k=1

(α − n + k)(t + 1)α−2n.

Therefore,

Dn+1(t) = (−1)[(n+1)/2]
n∏

k=1

k!(α − k + 1)n−k+1(t + 1)(n+1)α−(n+1)n.

Then (5.18) is proved by induction. The following proposition is proved.

Proposition 5. The Hankel determinant of the generalized binomial coefficients Lk
α−k(0) is

given by

Dn(0) = (−1)[n/2]
n−1∏
k=1

k!(α − k + 1)n−k. (5.20)

Case 3. σ(y) = −y2 − 1. Here σ(y) has two complex conjugate roots. Equation (4.4) is
solved to

φ(y) = λ3(y
2 + 1)−α/2 exp(−β arctan y) (5.21)
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where λ3 is an arbitrary nonzero constant. While the corresponding solution of (4.2) is given
by y(t) = tan(t − t0). Consequently we derive the moment

c0(t) = φ(y(t))

= λ3(1 + tan2(t − t0))
−α/2 e−β(t−t0)

= λ3 sec−α(t − t0) e−β(t−t0). (5.22)

The solution

bn(t) = (α − 2n) tan(t − t0) + β un(t) = −n(α − n + 1) sec2(t − t0) (5.23)

of the restricted TC equations is derived which corresponds to the Pollaczek orthogonal
polynomials [3].

It is to be noted that the E-generating function c0(t) = sec t of the Euler numbers emerges
from (5.22) through a specialization such that α = −1, β = 0 and λ3 = 1, t0 = 0. Thus the
Hankel determinant det(Ei+j )|i,j=0,...,n−1 of the Euler numbers is derived directly by computing
limt→0 Dn(t), where Dn(t) = det

(
c
(i+k)
0

)∣∣
i,k=0,...,n−1 and c

(0)
0 = sec t . We omit the proof of it.

Case 4. σ(y) = y + 1. In this case ξ = 0 and σ(y) is a linear function of y. The corresponding
solution of (4.4) is

φ(y) = λ4 eαy(y + 1)−α+β (5.24)

where λ4 is a nonzero constant. While equation (4.2) gives y(t) = et−t0 − 1. Consequently,
we have

c0(t) = φ(y(t)) = λ4 exp(α et−t0 − α − (α − β)(t − t0)). (5.25)

The solution of the restricted TC equations is

bn(t) = nα et−t0 − α + β un(t) = nα et−t0 (5.26)

which is related to the Charlier orthogonal polynomials [28].
Let us choose the parameters as α = 1, β = 1 and set λ4 = 1 and t0 = 0. Then an

E-generating function

c0(t) = eet−1 (5.27)

of the Bell numbers Bk emerges. Namely

c0(t) =
∞∑

k=0

Bk

tk

k!
Bk =

k∑
m=0

S(k,m) (5.28)

where S(k,m) is the Stirling number of the second kind. Thus Bk = c
(k)
0 (t). First several Bell

numbers are B0 = B1 = 1, B2 = 2, B3 = 5, B4 = 15, B5 = 52, B6 = 203, B7 = 877.
It is shown [21] that the Hankel determinants Dn(t) = det

(
c
(i+j)

0 (t)
)∣∣

i,j=0,...,n−1 and
Dn(0) = det(Bi+j )|i,j=0,...,n−1 are

Dn(t) =
n−1∏
k=0

k! exp

(
n(n − 1)

2
t + n et − n

)

Dn(0) =
n−1∏
k=0

k!

(5.29)

respectively. Proof of these formulae is given by using the Sylvester relation (5.1). It is shown
that the Hankel determinant det(Bi+j )|i,j=0,...,n−1 of the Bell numbers is presented through a
separation of variables of case 4.
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Table 1. Toda chain, combinatorial numbers and orthogonal polynomials.

Case 1 Case 2 Case 3 Case 4 Case 5

σ(y) −y2 + 1 −(y − 1)2 −y2 − 1 y + 1 1
c0(t) 2et /(e2t + 1) (t + 1)α e−xt+x sec−α t · e−t exp(et − 1) exp(−t2 + 2xt)

un(t) −n(n − α − 1) sech2(t) n(n − α − 1)/(t + 1)2 −n(α − n + 1) sec2 t nα et nα

Combinatorial number Euler number Ek Binomial coeff.
(
α
k

)
Euler number Ek Bell number Bk Hermite o.p. Hk(z)

Hankel determinant
(∏n−1

k=0 k!
)2

(−1)[n/2] ∏n−1
k=1 k!(α−k+1)n−k

(∏n−1
k=0 k!

)2 ∏n−1
k=0 k! (−2)n(n−1)

∏n−1
k=0 k!

Sheffer orthogonal polynomial Meixner Laguerre Pollaczek Charlier Hermite
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Case 5. σ(y) = 1. A solution of (4.4) is given by

φ(y) = λ5 exp
(α

2
y2 + βy

)
(5.30)

where λ5 is a nonzero constant. Equation (4.2) simply gives y(t) = t − t0. We have

c0(t) = φ(y(t)) = λ5 exp
(α

2
(t − t0)

2 + β(t − t0)
)

. (5.31)

The resulting solution is very simple:

bn(t) = α(t − t0) + β un(t) = nα. (5.32)

Let us choose the parameters as α = −2, β = 2x and set λ5 = 1 and t0 = 0. Then an
E-generating function

c0(t) = exp(−t2 + 2xt) (5.33)

of the Hermite polynomials Hk(x) is derived, namely

c0(t) =
∞∑

k=0

Hk(x)
tk

k!
. (5.34)

The Hankel determinants Dn = det(Hi+j (x))|i,j=0,...,n−1 of Hermite polynomials is found in
Radoux [20] by an alternative way. The result is

Dn = det(Hi+j (x))|i,j=0,...,n−1 = (−2)n(n−1)

n−1∏
k=0

k!. (5.35)

Note that Dn is independent of x. Indeed, the parameter β = 2x in (5.33) appears
as an exponential multiplier of the moment. We see that the Hankel determinant
det(Hi+j (0))|i,j=0,...,n−1 of constant terms of the Hermite polynomials is given by using a
separation of variables of case 5.

Finally, we would like to mention that all explicit expressions for the Hankel determinants
in this section can be obtained directly from the formula

Dn = h0h1 . . . hn−1 (5.36)

which follows from (1.9). Indeed, normalization coefficients hn are reconstructed from (1.11)
and the recurrence coefficients un(t) are known explicitly. Nevertheless, our way of derivation
of Dn may be instructive because it exploits only the Toda chain equation (1.19).

Results in this section are summarized in table 1.

6. Concluding remarks

It is known that the Hankel determinant solutions of the restricted TC equations are completely
determined by the moment function c0(t). The key equations are ċn = cn+1, n = 0, 1, . . ..
In this paper we consider such solutions starting from a polynomial ansatz for the moments
cn(t) = Tn(y(t))c0(t). The main new result of the paper is the description of all such
solutions and their relations with the orthogonal polynomials of the Sheffer class. Another
new result is the combinatorial interpretation of these Toda chain solutions. Note that links
between Hankel determinants, orthogonal polynomials and some combinatorial numbers were
established earlier in [6, 7, 12, 20, 21, 25, 26]. We would like to stress that all these links
appear naturally from special solutions of the Toda chain.
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[21] Radoux C 1979 Calcul effectif de certains déterminants de Hankel Bull. Soc. Math. Belg. Sér. B 31 49–55
[22] Sogo K 1993 Time-dependent orthogonal polynomials and theory of soliton. Applications to matrix model,

vertex model and level statistics J. Phys. Soc. Japan 62 1887–94
[23] Szego′′ G 1975 Orthogonal Polynomials 4th edn (Providence, RI: American Mathematical Society)
[24] Toda M 1989 Theory of Nonlinear Lattices 2nd edn (Springer Series in Solid-State Sciences vol 20) (Berlin:

Springer) x+225 pp
[25] Viennot X 1985 A combinatorial theory for general orthogonal polynomials with extensions and applications

Orthogonal Polynomials and Applications (Bar-le-Duc, 1984) (Lecture Notes in Math. vol 1171) (Berlin:
Springer) pp 139–57

[26] Wimp J 2000 Hankel determinants of some polynomials arising in combinatorial analysis Computational
Methods from Rational Approximation Theory (Wilrijk, 1999) Numer. Algorithms 24 179–93

[27] Witte N S and Bessis D 1999 The Lanczos algorithm for extensive many-body systems in the thermodynamic
limit J. Math. Phys. 40 4975–94

[28] Zhedanov A S 1990 Toda lattice: solutions with dynamical symmetry and classical orthogonal polynomials
Teoret. Mat. Fiz. 82 11–7 (Russian)

Zhedanov A S 1990 Theor. Math. Phys. 82 6–11 (Engl. Transl.)


